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Abstract: We derive a new type of no-hidden-variables theorem based on the assumptions proposed by Kochen 

and Specker. We consider N  spin-1/2 systems. The hidden results of measurement are either 1  or 1  (in 

/2  unit). We derive some proposition concerning a quantum expected value under an assumption about the 

existence of the Bloch sphere in N  spin-1/2 systems. However, the hidden variables theory violates the 

proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up 

either the existence of the Bloch sphere or the hidden variables theory. Also we discuss two-dimensional 

no-hidden-variables theorem of the KS type. Especially, we systematically describe our assertion based on more 

mathematical analysis using raw data in a thoughtful experiment.  
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1. INTRODUCTION 

Quantum mechanics (cf. [1, 2, 3, 5, 4, 6]) gives accurate and at times remarkably accurate numerical 

predictions. Much experimental data has fit to the quantum predictions for long time. 

Kochen and Specker present the no-hidden-variables theorem (the KS theorem) [7]. The KS theorem 

says the non-existence of a real-valued function which is multiplicative and linear on commuting 

operators. The proof of the KS theorem relies on intricate geometric argument. Greenberger, Horne, and 

Zeilinger discover [8, 9] the so-called GHZ theorem for four-partite GHZ state. And, the KS theorem 

becomes very simple form (see also Refs. [10, 11, 12, 13, 14]). 

It is begun to research the validity of the KS theorem by using inequalities (see Refs. [15, 16, 17, 18]). 

To find such inequalities to test the validity of the KS theorem is particularly useful for experimental 

investigation [19]. One of authors derives an inequality [18] as tests for the validity of the KS theorem. 

The quantum predictions violate the inequality when the system is in an uncorrelated state. An 

uncorrelated state is defined in Ref. [20]. The quantum predictions by n -partite uncorrelated state 

violate the inequality by an amount that grows exponentially with n . 

Recently, Leggett-type non-local variables theory [21] is experimentally investigated [22, 23, 24]. The 

experiments report that quantum mechanics does not accept Leggett-type non-local variables 

interpretation. However there are debates for the conclusions of the experiments. See Refs. [25, 26, 27]. 

As for the applications of quantum mechanics, implementation of a quantum algorithm to solve 

Deutsch‟s problem [28, 29, 30] on a nuclear magnetic resonance quantum computer is reported firstly 

[31]. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported 

[32]. There are several attempts to use single-photon two-qubit states for quantum computing. Oliveira  

et al. implement Deutsch‟s algorithm with polarization and transverse spatial modes of the 

electromagnetic field as qubits [33]. Single-photon Bell states are prepared and measured [34]. Also the 

decoherence-free implementation of Deutsch‟s algorithm is reported by using such single-photon and 

by using two logical qubits [35]. More recently, a one-way based experimental implementation of 

Deutsch‟s algorithm is reported [36]. In 1993, the Bernstein-Vazirani algorithm was reported [37]. It 

can be considered as an extended Deutsch-Jozsa algorithm. In 1994, Simon‟s algorithm was reported 

[38]. Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without 

entanglement on an ensemble quantum computer is reported [39]. Fiber-optics implementation of the 
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Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits is discussed [40]. A 

quantum algorithm for approximating the influences of Boolean functions and its applications is 

recently reported [41]. 

On the other hand, the double-slit experiment is an illustration of wave-particle duality. In it, a beam of 

particles (such as photons) travels through a barrier with two slits removed. If one puts a detector screen 

on the other side, the pattern of detected particles shows interference fringes characteristic of waves; 

however, the detector screen responds to particles. The system exhibits the behaviour of both waves 

(interference patterns) and particles (dots on the screen). 

If we modify this experiment so that one slit is closed, no interference pattern is observed. Thus, the 

state of both slits affects the final results. We can also arrange to have a minimally invasive detector at 

one of the slits to detect which slit the particle went through. When we do that, the interference pattern 

disappears [42]. An analysis of a two-atom double-slit experiment based on environment-induced 

measurements is reported [43]. 

We try to implement the double-slit experiment. There is a detector just after each slit. Thus interference 

figure does not appear, and we do not consider such a pattern. The possible values of the result of 

measurements are 1  (in /2  unit). If a particle passes one side slit, then the value of the result of 

measurement is 1 . If a particle passes through another slit, then the value of the result of 

measurement is 1 . This is an easy detector model for a Pauli observable. 

In this paper, we derive a new type of no-hidden-variables theorem based on the assumptions proposed 

by Kochen and Specker. We consider N  spin-1/2 systems. The hidden results of measurement are 

either 1  or 1  (in /2  unit). We derive some proposition concerning a quantum expected value 

under an assumption about the existence of the Bloch sphere in N  spin-1/2 systems. However, the 

hidden variables theory violates the proposition with a magnitude that grows exponentially with the 

number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden 

variables theory. Also we discuss two-dimensional no-hidden-variables theorem of the KS type, by 

using the double-slit experiment. Especially, we systematically describe our assertion based on more 

mathematical analysis using raw data in a thoughtful experiment. 

Throughout this paper, we confine ourselves to the two-level (e.g., electron spin, photon polarizations, 

and so on) and the discrete eigenvalue case. 

2. NOTATIONS AND PREPARATION TO GET NEW TYPE OF NO-HIDDEN-VARIABLES THEOREM 

OF THE KS TYPE 

We consider a two-dimensional space H . Let N  denote a set of the numbers  

},{1,2,                                                                                     (2.1) 

that contains the countably infinite. Let S  be 1}{ . We assume that every result of measurements 

lies in S . We assume that every time t  lies in N . Let 
1

N  denote a set of the numbers  

},{1,5,9,                                                                                   (2.2) 

 that contains the countably infinite. Here we introduce 
11

Nt  . Let 
2

N  denote a set of the numbers  

},{2,6,10,                                                                                  (2.3) 

 that contains the countably infinite. Here we introduce 
22

Nt  . Let 
3

N  denote a set of the numbers  

},{3,7,11,                                                                                  (2.4) 

 that contains the countably infinite. Here we introduce 
33

Nt  . Let 
4

N  denote a set of the numbers  

},{4,8,12,                                                                                  (2.5) 

 that contains the countably infinite. Here we introduce 
44

Nt  . Let 


 be  

),,,(
zyx

                                                                                    (2.6) 
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the vector of Pauli operators. The measurements (observables) of 


n  are parameterized by a unit 

vector n


 (its direction along which the spin component is measured). Here,   is the scalar product in 
3

R . One measures an observable 


n . We define a notation )( t  which represents predetermined 

result of measurements at time t . We assume that measurement of an observable 


n  at time t  for a 

physical system in a state   yields a value Stn  ),,( 


. 

We consider the following: 

Assumption: M ( predetermined measurement outcome),  

.),,( Stn 


                                                                               (2.7) 

Assumption: E ( quantum expected value), 

.

),,(

lim=][T
1=

m

tn

nr

m

t

m
















                                                              (2.8) 

Assumption: T 

If  

,

),,(

lim=][T
1=

m

tn

nr

m

t

m
















                                                             (2.9) 

then  

2

2

2

2=
2

21

1

1

1=
1

1

),,(

lim=

),,(

lim=][T
m

tn

m

tn

nr

m

t

m

m

t

m
















                                  (2.10) 

and  

.

),,(

lim=

),,(

lim=][T

4

4

4

4=
4

43

3

3

3=
3

3
m

tn

m

tn

nr

m

t

m

m

t

m
















                                 (2.11) 

3. NEW TYPE OF NO-HIDDEN-VARIABLES THEOREM OF THE KS TYPE 

In this section, we give new type of no-hidden-variables theorem of the KS type. 

3.1. The Existence of the Bloch Sphere 

We assume a pure spin-1/2  state   lying in the x - y  plane. Let 


 be ),,(
zyx

 , the vector of 

Pauli operators. The measurements (observables) on a spin-1/2 state lying in the x - y  plane of 


n  

are parameterized by a unit vector n


 (its direction along which the spin component is measured). Here, 

  is the scalar product in 
3

R . 

We have a quantum expected value 1,2= ,
Q

kE
k

M
 as  

1,2.= ],[T
Q

knrE
k

k

M



                                                                     (3.1) 

We have 
(1)

xx


 , 
(2)

xy


 , and 
(3)

xz


 . They are the Cartesian axes relative to which spherical 

angles are measured. We write two unit vectors in the plane defined by 
(1)

x


 and 
(2)

x


 in the following 

way:  

.sincos=
(2)(1)

xxn
kkk


                                                                      (3.2) 
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Here, the angle 
k

  takes only two values:  

.
2

= 0,=
21


                                                                                  (3.3) 

We derive a necessary condition for the quantum expected value for the system in a pure spin-1/2 state 

lying in the x - y  plane given in (3.1). We derive the possible values of the scalar product  

 
2

QQQ

2

1=

M

k

M

k

M

k

EEE                                                                       (3.4) 

k

M
E

Q
 is the quantum expected value given in (3.1). We see that  

.=
22

2

Q


yxM
E                                                                        (3.5) 

We use the decomposition (3.2). We introduce simplified notations as  

][T=
)(




i

i
xrT                                                                                (3.6) 

and  

).sin,cos(=),,(
21

kkkk
cc                                                                       (3.7) 

Then, we have  

1,==
2

2

1=

2
2

1=

2

1=

2

Q











 i

i

i

ki

ik

M
TcTE                                                            (3.8) 

where we use the orthogonality relation  

.= 
,

2

1=






kk

k

cc                                                                                 (3.9) 

From a proposition of the quantum theory, the Bloch sphere with the value of  

2

2

1=

i

i

T                                                                                           (3.10) 

is bounded as  

1.
2

2

1=

 i

i

T                                                                                      (3.11) 

The reason of the condition (3.8) is the Bloch sphere  

1.])[T(
2)(

3

1=

 
 i

i

xr                                                                         (3.12) 

Thus we derive a proposition concerning a quantum expected value under an assumption of the 

existence of the Bloch sphere (in a spin-1/2 system). The proposition is  

1.
2

Q


M
E                                                                                    (3.13) 

This inequality is saturated iff   is a pure state lying in the x - y  plane. That is,  

1.=])[T(
2)(

2

1=





i

i

xr                                                                         (3.14) 

Hence, we derive the following proposition concerning the existence of the Bloch sphere when the 

system is in a pure state lying in the x - y  plane  

1.=
2

m
Q

ax
M

E                                                                                  (3.15) 
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3.2. The Existence of Hidden Measurement Outcome which is 1  

We assign the truth value “1” for Assumption M, Assumption E, and Assumption T. Let 
k

A  be 



k

n

. We assume four gedanken experiments in the same state  . The value of ),,(
11

tA  is independent 

of ),,(
21

tA . We note that the measurement time is different from each other. Here, we assume 

11
Nt   and 

22
Nt  . The value of ),,(

32
tA  is independent of ),,(

42
tA . We note that the 

measurement time is different from each other. Here, we assume 
33

Nt   and 
44

Nt  . The values of 

),,(
11

tA , ),,(
21

tA , ),,(
32

tA , and ),,(
42

tA  are independent of each other. We note 

that the measurement time is different from each other. We assume that the number of each of quantum 

measurements is the countably infinite. We know that a sum of „four‟ countably infinite is the countably 

infinite. We do not have to assign definite values to non-commuting observables in the same time. 

From Assumption E and Assumption T, the quantum expected value in (3.1) ( 1=k ), which is the 

average of the results of measurements, is given by  

.

),,(

lim=

1

11

1

1=
1

1

1

Q

m

tA

E

m

t

m
M





                                                                   (3.16) 

From Assumption M, the possible values of the measured result ),,(
11

tA  are 1 . 

From Assumption T, the same quantum expected value is given by  

.

),,(

lim=

2

21

2

2=
2

2

1

Q

m

tA

E

m

t

m
M





                                                                  (3.17) 

From Assumption M, the possible values of the measured result ),,(
21

tA  are 1 .  

From Assumption T, we see  

,1}=),,(|{=1}=),,(|{
2122211111

tANtttANtt    

1}=),,(|{=1}=),,(|{
2122211111

 tANtttANtt                       (3.18)
 

From Assumption E and Assumption T, the quantum expected value in (3.1) ( 2=k ), which is the 

average of the results of measurements, is given by  

.

),,(

lim=

3

32

3

3=
3

3

2

Q

m

tA

E

m

t

m
M





                                                                  (3.19) 

From Assumption M, the possible values of the measured result ),,(
32

tA  are 1 . 

From Assumption T, the same quantum expected value is given by  

.

),,(

lim=

4

42

4

4=
4

4

2

Q

m

tA

E

m

t

m
M





                                                                  (3.20) 

From Assumption M, the possible values of the measured result ),,(
42

tA  are 1 .  

From Assumption T, we see  

,1}=),,(|{=1}=),,(|{
4244432333

tANtttANtt    

.1}=),,(|{=1}=),,(|{
4244432333

 tANtttANtt 
                   (3.21)

 

We derive a necessary condition for the two quantum expected values for the system in a pure spin-1/2 
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state lying in the x - y  plane given in (3.16) and (3.19). We derive the possible values of the scalar 

product 
2

Q M
E  of the two quantum expected values, 

k

M
E

Q
 given in (3.16) and (3.19). 

We introduce an assumption that Sum rule and Product rule commute with each other [44]. We do not 

pursue the details of the assumption. To pursue the details is an interesting point. It is suitable to the next 

step of researches. We have  

2

Q M
E  


































2

21

2

2=
2

21

11

1

1=
1

1

),,(

lim

),,(

lim=
m

tA

m

tA

m

t

m

m

t

m



 


































4

42

4

4=
4

43

32

3

3=
3

3

),,(

lim

),,(

lim
m

tA

m

tA

m

t

m

m

t

m



 



































),,(),,(limlim=
2111

2

2

2=
2

21

1

1=
1

1

tAtA
mm

m

t

m

m

t

m

  



































),,(),,(limlim 4232

4

4

4=
4

43

3

3=
3

3

tAtA
mm

m

t

m

m

t

m

  



































|),,(),,(|limlim 2111

2

2

2=
2

21

1

1=
1

1

tAtA
mm

m

t

m

m

t

m

  



































|),,(),,(|limlim 4232

4

4

4=
4

43

3

3=
3

3

tAtA
mm

m

t

m

m

t

m

  

2.=limlimlimlim=

4

4

4=
4

43

3

3=
3

32

2

2=
2

21

1

1=
1

1































































 mmmm

m

t

m

m

t

m

m

t

m

m

t

m

                                          (3.22) 

From Assumption M, we have  
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1.|=),,(),,(| 1,|=),,(),,(|
42322111

 tAtAtAtA                                  (3.23) 

The above inequality (3.22) is saturated when  

1.=),,(),,( 1,=),,(),,(
42322111

tAtAtAtA                                        (3.24) 

This implies  

).,,(=),,( ),,,(=),,(
42322111

tAtAtAtA                                           (3.25) 

The above condition (3.25) can be possible since, as we have said,  

,1}=),,(|{=1}=),,(|{
2122211111

tANtttANtt    

,1}=),,(|{=1}=),,(|{
2122211111

 tANtttANtt                       
(3.26)

 

and  

,1}=),,(|{=1}=),,(|{
4244432333

tANtttANtt    

.1}=),,(|{=1}=),,(|{
4244432333

 tANtttANtt 
                   (3.27)

 

Thus we derive a proposition concerning the two quantum expected values under an assumption that we 

assign the truth value “1” for Assumption M, Assumption E, and Assumption T (in a spin-1/2 system). 

The proposition is 2
2

Q


M
E . This inequality can be saturated. Hence we derive the following 

proposition concerning Assumption M, Assumption E, and Assumption T:  

2.=
2

m
Q

ax
M

E                                                                                 (3.28) 

3.3. Contradiction 

We cannot assign the truth value “1” for two propositions (3.15) (concerning the existence of the Bloch 

sphere) and (3.28) (concerning Assumption M, Assumption E, and Assumption T), simultaneously, 

when the system is in a pure state lying in the x - y  plane. Therefore, we are in the KS contradiction. 

We do not assign the truth value “1” for five assumptions   

    1.  Assumption M  

    2.  Assumption E  

    3.  Assumption T  

    4.  The existence of the Bloch sphere  

    5.  Sum rule and Product rule commute with each other, simultaneously. 

4. HIGH DIMENSIONAL NO-HIDDEN-VARIABLES THEOREM OF THE KS TYPE 

In this section, we derive a proposition concerning a quantum expected value under an assumption of 

the existence of the Bloch sphere in N  spin-1/2 systems (  <1 N ). This assumption intuitively 

depictures our physical world. However, the hidden variables theory (the result of measurements is 1

) violates the proposition with a magnitude that grows exponentially with the number of particles. We 

have to give up either the existence of the Bloch sphere or the hidden variables theory. Therefore, the 

hidden variables theory cannot depicture our physical world with a violation factor that grows 

exponentially with the number of particles. 

4.1. The Existence of the Bloch Sphere 

Assume that we have a set of N  spins 
2

1
. Each of them is a spin-1/2  pure state lying in the x - y  

plane. Let us assume that one source of N  uncorrelated spin-carrying particles emits them in a state, 

which can be described as a multi spin-1/2 pure uncorrelated state. Let us parameterize the settings of 
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the j th observer with a unit vector 
j

n


 (its direction along which the spin component is measured) 

with Nj ,1,=  . One can introduce the „hidden variables‟ correlation function, which is the average 

of the product of the hidden results of measurement  

,),,,(=),,,(
a2121H vgNNV

nnnrnnnE 








                                                    (4.1) 

where r  is hidden result. We assume the value of r  is 1  (in (
N

/2)  unit), which is obtained if the 

measurement directions are set at 
N

nnn





,,,
21

. 

Also one can introduce a quantum correlation function with the system in such a pure uncorrelated state  

][t=),,,(
2121Q











NNM

nnnrnnnE                                         (4.2) 

where   denotes the tensor product,   the scalar product in 
2

R , ),(=
yx




 is a vector of two 

Pauli operators, and   is the pure uncorrelated state,  

N
  

21
=                                                                         (4.3) 

with |=|
jjj

  and 
j

|  is a spin-1/2  pure state lying in the x - y  plane. 

One can write the observable (unit) vector 
j

n


 in a plane coordinate system as follows:  

,sincos=)(
(2)(1)

j

j
k

jj

j
k

j

j
k

jj
xxn


                                                              (4.4) 

where xx
j


=

(1)
 and yx

j


=

(2)
 are the Cartesian axes. Here, the angle 

j
k

j
  takes two values 

(two-setting model):  

.
2

= 0,=
21 


jj

                                                                                (4.5) 

We derive a necessary condition to be satisfied by the quantum correlation function with the system in a 

pure uncorrelated state given in (4.2). In more detail, we derive the value of the product of the quantum 

correlation function, 
M

E
Q

 given in (4.2), i.e., 
2

Q M
E . We use the decomposition (4.4). We introduce 

simplified notations as  

][t=
)()

2
(

2

)
1

(

1
21








 N

i

N

ii

N
iii

xxxrT                                                (4.6) 

and  

).sin,cos(=),(=
21 j

k

j

j
k

jjjj
ccc 


                                                              (4.7) 

Then, we have  

2

Q M
E  

2

1

1
1

2

1=,,
1

2

1=

2

1=
1

=

















N

i

N

i

N
ii

N
ii

N
kk

ccT 




 

1,=
2

...
1

2

1=,,
1


N

ii

N
ii

T



                                                                             (4.8) 

where we use the orthogonality relation 





,

2

1=
=

jj
j

k
cc . The value of 

2

1

2

1=,,
1 N

ii
N

ii
T

  is bounded 

as 1
2

1

2

1=,,
1


N

ii
N

ii
T


. We have  

1.])[t(
2

)(
2

1=1=

 


j
i

jj

j
i

N

j

xr                                                                     (4.9) 
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From the convex argument, all quantum separable states must satisfy the inequality (4.8). Therefore, it 

is a separability inequality. It is important that the separability inequality (4.8) is saturated iff   is a 

multi spin-1/2 pure uncorrelated state such that, for every j , 
j

|  is a spin-1/2  pure state lying in 

the x - y  plane. The reason of the inequality (4.8) is due to the following quantum inequality  

1.])[t(
2

)(
2

1=

 


j
i

jj

j
i

xr                                                                       (4.10) 

The inequality (4.10) is saturated iff |=|
jjj

  and 
j

|  is a spin-1/2  pure state lying in the 

x - y  plane. The inequality (4.8) is saturated iff the inequality (4.10) is saturated for every j . Thus we 

have the maximal possible value of the scalar product as a quantum proposition concerning the 

existence of the Bloch sphere  

1=
2

m
Q

ax
M

E                                                                                   (4.11) 

 when the system is in such a multi spin-1/2 pure uncorrelated state. 

4.2. The Hidden Variables Theory 

On the other hand, a correlation function satisfies the hidden variables theory if it can be written as  

m

lnnnr

nnnE

N

m

l

m
NV

),,,,(

lim=),,,(

21

1=

21H














                                               (4.12) 

where l  denotes a label and r  is the result of measurement of the dichotomic observables 

parameterized by the directions of 
N

nnn





,,,
21

. 

Assume the quantum correlation function with the system in a pure uncorrelated state given in (4.2) 

admits the hidden variables theory. One has the following proposition concerning the hidden variables 

theory  

.

),,,,(

lim=),,,(

21

1=

21Q

m

lnnnr

nnnE

N

m

l

m
NM














                                              (4.13) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (4.13) concerning 

the hidden variables theory. 

Assume the proposition (4.13) is true. By changing the label l  into l  , we have the same quantum 

expected value as follows  

.

),,,,(

lim=),,,(

21

1=

21Q

m

lnnnr

nnnE

N

m

l

m
NM















                                              (4.14) 

An important note here is that the value of the right-hand-side of (4.13) is equal to the value of the 

right-hand-side of (4.14) because we only change the label. 

We abbreviate ),,,,(
21

lnnnr
N





 to )( lr  and ),,,,(

21
lnnnr

N






 to )( lr  . 

We introduce an assumption that Sum rule and Product rule commute with each other [44]. We have  
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2

Q M
E  

































 m

lr

m

lr

m

l

m

m

l

m

N
kk

)(

lim

)(

lim=
1=1=

2

1=

2

1=
1

  


































)()(limlim=
1=1=

2

1=

2

1=
1

lrlr
mm

m

l

m

m

l

m

N
kk

  


































|)()(|limlim
1=1=

2

1=

2

1=
1

lrlr
mm

m

l

m

m

l

m

N
kk

  

.2=limlim=
1=1=

2

1=

2

1=
1

N

m

l

m

m

l

m

N
kk mm


































                                                          (4.15) 

We use the following fact  

1.|=),,,,(),,,,(|
2121

lnnnrlnnnr
NN








                                                   (4.16) 

The inequality (4.15) is saturated since we have  

}1=),,,,(|{
21

Nllnnnrl
N







 

,}1=),,,,(|{=
21

Nllnnnrl
N







 

}1=),,,,(|{
21

Nllnnnrl
N







 

.}1=),,,,(|{=
21

Nllnnnrl
N







                                                    (4.17) 

Hence one has the following proposition concerning the hidden variables theory.  

.2=
2

m
Q

N

ax
M

E                                                                               (4.18) 

4.3. Contradiction 

Clearly, we cannot assign the truth value “1” for two propositions (4.11) (concerning the existence of 

the Bloch sphere) and (4.18) (concerning the hidden variables theory), simultaneously, when the system 

is in a multiparticle pure uncorrelated state. Of course, each of them is a spin-1/2  pure state lying in the 

x - y  plane. Therefore, we are in the KS contradiction when the system is in such a multiparticle pure 

uncorrelated state. Thus, we cannot accept the validity of the proposition (4.13) (concerning the hidden 

variables theory) if we assign the truth value “1” for the proposition (4.11) (concerning the existence of 

the Bloch sphere). In other words, the hidden variables theory does not reveal our physical world. 

5. TWO-DIMENSIONAL NO-HIDDEN-VARIABLES THEOREM OF THE KS TYPE 

In this section, we consider the relation between the double-slit experiment and the hidden variables 

theory. We try to implement the double-slit experiment. There is a detector just after each slit. Thus 

interference figure does not appear, and we do not consider such a pattern. The possible values of the 
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result of measurements are 1  (in /2  unit). If a particle passes one side slit, then the value of the 

result of measurement is 1 . If a particle passes through another slit, then the value of the result of 

measurement is 1 . 

5.1. A Wave Function Analysis 

Let ),(
xz

  be Pauli vector. We assume that a source of spin-carrying particles emits them in a state 

| , which can be described as an eigenvector of a Pauli observable 
z

 . We consider a quantum 

expected value 
x

  as  

0.=||=  
xx

                                                                        (5.1) 

The above quantum expected value is zero if we consider only a wave function analysis. 

We derive a necessary condition for the quantum expected value for the system in the pure spin-1/2 

state |  given in (5.1). We derive the possible value of the product 
2

= 
xxx

 . 
x

  is 

the quantum expected value given in (5.1). We derive the following proposition  

0.=
2


x

                                                                                       (5.2) 

Hence we have  

0.
2


x
                                                                                       (5.3) 

Thus,  

0.=)(
m

2

axx
                                                                                  (5.4) 

5.2. The Hidden Variables Theory 

On the other hand, a mean value E  admits the hidden variables theory if it can be written as  

m

r

E

xl

m

l

)(

=
1=


                                                                                  (5.5) 

where l  denotes a label and r  is the result of measurement of the Pauli observable 
x

 . We assume 

the value of r  is 1  (in /2  unit). 

Assume the quantum mean value with the system in an eigenvector ( | ) of the Pauli observable 
z

  

given in (5.1) admits the hidden variables theory. One has the following proposition concerning the 

hidden variables theory  

.

)(

=)(
1=

m

r

m

xl

m

l

x






                                                                           (5.6) 

We can assume as follows by Strong Law of Large Numbers [45],  

.||==)(  
xxx

                                                               (5.7) 

In what follows, we show that we cannot assign the truth value “1" for the proposition (5.6) concerning 

the hidden variables theory. 

Assume the proposition (5.6) is true. By changing the label l  into l  , we have the same quantum mean 

value as follows  

.

)(

=)(
1=

m

r

m

xl

m

l

x










                                                                           (5.8) 
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An important note here is that the value of the right-hand-side of (5.6) is equal to the value of the 

right-hand-side of (5.8) because we only change the label. 

We introduce an assumption that Sum rule and Product rule commute with each other [44]. We have  

)()( mm
xx
   

m

r

m

r
xl

m

l

xl

m

l

)()(

=
1=1=







  

)()(=
1=1=

xlxl

m

l

m

l
rr

mm







  

|)()(|
1=1=

xlxl

m

l

m

l
rr

mm







  

1.==
1=1=

mm

m

l

m

l




                                                                                   (5.9) 

We use the following fact  

1.|=)()(|
xlxl

rr 


                                                                            (5.10) 

The inequality (5.9) is saturated since we have  

,}1=)(|{=}1=)(|{ NlrlNlrl
xlxl



  

.}1=)(|{=}1=)(|{ NlrlNlrl
xlxl



                                 (5.11) 

Thus we derive a proposition concerning the quantum mean value under an assumption that the hidden 

variables theory is true (in a spin-1/2 system), that is  

1.=))()((
m axxx

mm                                                                   (5.12) 

 From Strong Law of Large Numbers, we have  

1.=)(
m axxx

                                                                          (5.13) 

 Hence we derive the following proposition concerning the hidden variables theory  

1.=)(
m

2

axx
                                                                         (5.14) 

5.3. Contradiction 

We do not assign the truth value “1” for two propositions (5.4) (concerning a wave function analysis) 

and (5.14) (concerning the hidden variables theory), simultaneously. We are in the KS contradiction. 

We cannot accept the validity of the proposition (5.6) (concerning the hidden variables theory) if we 

assign the truth value “1" for the proposition (5.4) (concerning a wave function analysis). In other 

words, the hidden variables theory does not meet the detector model for the spin observable 
x

 . 

6. CONCLUSIONS 

In conclusion, we have derived a new type of no-hidden-variables theorem based on the assumptions 

proposed by Kochen and Specker. We have considered N  spin-1/2 systems. The hidden results of 

measurement have been either 1  or 1  (in /2  unit). We have derived some proposition 

concerning a quantum expected value under an assumption about the existence of the Bloch sphere in 

N  spin-1/2 systems. However, the hidden variables theory has violated the proposition with a 
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magnitude that grows exponentially with the number of particles. Therefore, we have to have given up 

either the existence of the Bloch sphere or the hidden variables theory. Also we have discussed 

two-dimensional no-hidden-variables theorem of the KS type. Especially, we have systematically 

described our assertion based on more mathematical analysis using raw data in a thoughtful experiment. 
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