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We present the Kochen-Specker (KS) theorem in a two-dimensional white noise state. We consider 

whether we can simulate the state by a realistic theory of the KS type. It turns out that we cannot 

simulate the state by the realistic theory of the KS type. 
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1. INTRODUCTION 

The quantum theory (cf. [1—5]) gives approximate but frequently remarkably accurate numerical 

predictions. 

Kochen and Specker present the no-hidden-variables theorem (the KS theorem) [6]. The KS theorem 

says the non-existence of a real-valued function which is mul-tiplicative and linear on commuting 

operators. Green-berger, Horne, and Zeilinger discover [7, 8] the so-called GHZ theorem for four-

partite GHZ state. Then, the KS theorem becomes very simple form (see also Refs. [9—13]). 

In this paper, we present the KS theorem in a two-dimensional white noise state. We consider whether 

we can simulate the state by a realistic theory of the KS type. It turns out that we cannot simulate the 

state by the realistic theory of the KS type. 

2. THE KS THEOREM IN A TWO-DIMENSIONAL WHITE NOISE STATE 

In this section, we present the KS theorem in the two-dimensional white noise state. 

A. A Wave Function Analysis  

Let  
x

  a single Pauli observable. Here, 

x
 =

0 1

1 0

 

 
 

                                                                                                                                       (1) 

We assume that a source of a spin-carrying particle emits  them in a state
n o is e

V . Here, 

1 01

0 12
n o is e

V
 

  
 

                                                                                                                              (2) 

We consider a quantum expected value [ ]
n o is e x

T r V  . If we consider only a wave function analysis, 

the possible value of the square of the quantum expected value is 

2

( [ ]) 0
no ise x

T r V                                                                                                                               (3) 

We define 
2

Q M
E  as 
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2
2

( [ ] )
Q M n o is e x

E T r V                                                                                                                    (4) 

2

m a x
Q M

E and 
2

m in
Q M

E are the maximal and minimal possible values of the product, respectively. 

We have 

 
2

0
Q M

E                                                                                                                                       (5) 

Thus, 

2

m a x

0
Q M

E                                                                                                                                       (6) 

We have 

2

0
Q M

E                                                                                                                                           (7) 

Thus, 

2

m in

0
Q M

E                                                                                                                                       (8) 

Hence we have 

2

m a x

0
Q M

E   and 
2

m in

0
Q M

E  .                                                                                                  (9) 

B. The Realistic Theory of the KS Type 

A mean value E satisfies the realistic theory of the KS type if it can be written as 

11
( )

m

xl
r

E
m







                                                                                                                              (10) 

Where l  denotes a notation and r is the result of the measurement of the Pauli observable 
x

 . We 

assume the values of r are either 1 or −1 (in 2h unit). Assume the quantum mean value with the 

system in the two dimensional white noise state admits the realistic theory of the KS type. One has the 

following proposition concerning the realistic theory of the KS type 

11
( )

[ ]( )

m

xl

n o ise x

r
T r V m

m








                                                                                                      (11) 

We can assume the following by Strong Law of Large Numbers [14], 

[ ] ( ) [ ]
n o is e x n o is e x

T r V T r V                                                                                                     (12) 

We define 
2

( )
Q M

E m  as  

2
2

( ) ( [ ] ( ) )
Q M n o is e x

E m T r V m                                                                                                  (13) 

We can assume the following by Strong Law of Large Numbers, 

2 2
2

( ) ( [ ] )
Q M Q M n o is e x

E E T r V                                                                                        (14) 

In what follows, we show that we cannot accept the relation (11) concerning the realistic theory of the 

KS type. Assume the proposition (11) is true. By changing the notation l  into 
'

l , we have same 

quantum mean value as follows 
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1
( )

[ ]( )

m

l xl

n o ise x

r
T r V m

m








                                                                                                    (15) 

We introduce an assumption that Sum rule and Product rule commute with each other [15]. We do not 

pursue the details of the assumption. To pursue the details is an interesting point. It is suitable to the 

next step of researches. We have the following 

2
1 1

( ) ( )
( )

m m

l x l xl l

Q M

r r
E m

m m

 
 

 
 

 

                   
1 1

( ) ( )

m m

l l

l x l x
r r

m m
 

 


 
 

   

                     
1 1

1

m m

l l

m m

 
  
 

                                                                                                (16) 

Clearly, the above inequality can have the upper limit,  since the following case is possible:     

{ ( ) 1} { ( ) 1}
l x l x

l l N r l l N r 


                                                                         (17) 

And 

{ ( ) 1} { ( ) 1}
l x l x

l l N r l l N r 


                                                                    (18) 

And we have the following 

2
1 1

( ) ( )
( )

m m

l x l xl l

Q M

r r
E m

m m

 
 

 
 

 

                     
1 1

( 1)

m m

l l

m m

 
  
 

   

                     
1 1

( 1) 1

m m

l l

m m

 
    

 
                                                                                    (19)       

Clearly, the above inequality can have the lower limit since the following case is possible:           

{ ( ) 1} { ( ) 1}
l x l x

l l N r l l N r 


                                                                       (20)          

And 

{ ( ) 1} { ( ) 1}
l x l x

l l N r l l N r 


                                                                       (21) 

Thus we derive a proposition concerning the quantum mean value under the assumption that the 

realistic theory of the KS type is true (in a spin-1/2 system), that is 

2

1 ( ) 1
Q M

E m                                                                                                                          (22) 

From Strong Law of Large Numbers, we have 

2

1 1
Q M

E                                                                                                                                  (23) 

Hence we derive the following proposition concerning the realistic theory of the KS type 

2

m in

1
Q M

E   and 
2

m a x

1
Q M

E                                                                                                   (24) 
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We cannot accept the two relations (9) (concerning a wave function analysis) and (24) (concerning the 

realistic theory of the KS type), simultaneously. Hence we are in the KS contradiction. 

3. CONCLUSION 

In conclusion, we have presented the KS theorem in the two-dimensional white noise state. We have 

considered whether we can simulate the state by a realistic theory of the KS type. It has turned out 

that we cannot simulate the state by the realistic theory of the KS type. 
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