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Abstract: This work is devoted to a numerical study of the thermal free convection, laminar and permanently 

developed in the vicinity of a smooth-walled truncated cone. The equations governing these transfers are 

developed in the framework of the approximation of the laminar boundary layer. 

Authors numerically solving, using the method of finite differences, the transfer equations, laminar, three-

dimensonal, between inclined isothermal cone of revolution, and a newtonian fluid in vertical upward flow 

generated by the free convection. In the boundary layer, the results concerning the adimensional velocity fields 

and temperatures as well as the Nusselt numbers and the friction coefficients, are represented graphically. 

Keywords: three-dimensional free convection, three-dimensional boundary layer, inclined cone of revolution, 

momentum and heat transfers, theorical study. 

 

1. NOMENCLATURE 

1.1. Roman Letter Symbols 

a thermal diffusivity of the fluid, (m
2
.s

-1
) 

Cfu meridian friction coefficient 

Cfw azimuthal friction coefficient 

Cp specific heat capacity at constant        pressure of the fluid, (J.kg
-1

.K
-1

)
 

g acceleration due to gravity (m.s
-2

) 

L reference length equal to the  length of    the generatrix of the cone, (m) 

Nu local Nusselt number 

Pr Prandtl number 

r normal  distance from the  projected M of a point P of the fluid  to the axis of revolution of 

cone,(m) 

Sx, S  factors of geometric configuration 

T∞             temperature of the fluid away from the wall, (K) 

Tp              temperature of the wall, (K) 

Vx             velocity component in x-direction, (m.s
-1

) 

Vy             velocity component in y-direction, (m.s
-1

) 

Vφ             velocity component in φ-direction, (m.s
-1

) 

x meridian coordinate, (m) 

y normal coordinate, (m) 

1.2. Greek Letter Symbols 

 angle of inclination, (°) 

 azimuthal coordinate, (°) 

 density of the fluid, ( kg.m
-3

)
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o half angle of the cone, (°) 

 kinematic viscosity,  (m
2
.s

-1
) 

 thermal conductivity, (W.m
-1

.K
-1

) 

 dynamic viscosity, (kg.m
-1

.s
-1

) 

 Volumetric coefficient of thermal expansion, (K
-1

) 

1.3. Indices/ Exponents 

+ dimensionless variables 

2. INTRODUCTION 

Various applications of heat transfer in the vicinity of the body symmetrical raised many theoretical 

and experimental studies both because of their importance in many areas of technology (thermal 

power plants, solar collectors, heat exchangers, ...). 

Much work has been published on the free convection around a vertical cone as well as its wall is 

uniform or not, it is maintained at a constant temperature or subjected to a heat flux. 

Merk and Prins [1] developed the general relationship on the solutions of an axisymmetrical system of 

an isothermal body and discussed a study of the laminar thermal convection type boundary layer in 

the vicinity of a cone with a smooth surface. Alamgir [2] investigated the overall heat transfer in 

laminar free convection from vertical cones using the integral method. Bapuji et al. [3] studied the 

current unstable of the laminar natural convection with an isothermal vertical cone. Pop and Tsung 

Yen [4] have studied the effects of the compressibility in the laminar convection around a vertical 

cone and shown that the heat transfer for a smooth-walled cone are superior to those obtained for a 

corrugated wall cone, and again later Siabdallah et al. [5] confirmed this phenomenon. S. Roy [6] 

studied this transfer by free convection around a vertical cone but with a very high Prandtl number. 

Having regard to all these works on a vertical cone, the study of heat transfer about an inclined cone, 

is also of great interest. Recently, F.A. Rakotomanga et al. [8] have approached the study of the 

influence of the angle inclination of the cone on the flow and heat transfer between the wall and the 

fluid by forced convection. They have shown that, on one hand, increasing the angle inclination 

reduces the heat exchange between the fluid and the wall, but on other hand it causes a slight increase 

in the thickness of the boundary layer. This work, which aims to analyze the effect on the heat transfer 

of the cone angle inclination and its opening angle, the latter provides a numerical study of natural 

convection. 

The conservation equations are discretized using an implicit finite difference scheme. The Velocity 

fields and temperatures, associated with the boundary conditions, are determined from the Thomas 

algorithm. 

 
Fig1.  Physical model and  co-ordinates system 
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3. MATHEMATICAL FORMULATION     

The physical model considered consists of a cone of revolution of length L and inclined at an angle  

relative vertically. The wall of the cone is kept at a temperature constant Tp, different of the temperature 

T∞ of fluid away from the wall which is also constant. 

3.1. Simplifying Assumptions 

Besides the classical assumptions of the boundary layer and those of Boussinesq,we ask  the following 

assumptions: 

 The cone is stationary, 

 Transfers are laminar and permanent 

 Radiative transfer and viscous dissipation of energy are negligible, 

 The fluid is air whose physical properties are constant except for the density of which  is to change 

the origin of the natural convection. 

3.2. Conservation Equations in the Boundary Layer 

Using the following dimensionless variables:  

x
x

L
, 

1

4
y

y Gr
L

, , r
r

L
, x

x

V
V

Lg T
,  

1

4
y

y

V Gr
V

Lg T

, V
V

Lg T
, 

P

T T
T

T T
 

with 

3

p

2

g (T T )L
Gr  , Grashof number 

The governing boundary layer equations of continuity, momentum and energy under Boussinesq 

approximation are as follows: 

3.3. Equation of Continuity 

yx x
V VV 1 V dr

0
x y r r dx

                                                                                   (1) 

3.4. Equation of Momentum 

2 2

yx x x

x y x 2

V V VV V dr V
V V S T

x y r r dx y
                                                                           (2)

 

2

x

x y 2

V V V V V V Vdr
V V S T

x y r r dx y
                                                                          (3) 

Sx and S   designate the factors of geometric configuration defined by: 

x 0 0
S sin . cos .sin cos . cos  

                                                                                                           (4)
 

S = sin α .sin
                                                                                                                               (5) 

3.5. Equation of Energy 

2

x y 2

VT T T 1 T
V V

x y r Pr y
                                                                                        (6)
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with 
Cp

Pr
a

 , Prandtl number 

In these equations, we associate the following dimensionless boundary conditions: 

on the wall, y+
 0 

x yT 1, V V V 0
                                                                                                                  (7) 

 away of the wall, y
+ 

 : 

x yT 0 , V V V 0
                                                                                                                  (8) 

2.3. Nusselt number and friction coefficients 

2.3.1. Nusselt Number 

1

4

y 0

T
NuGr

y
                                                                                                                              (9) 

2.3.2. Friction Coefficients 

 

                                                                                                                          (10) 

 

 

                                                                                                                           (11) 

 

4. NUMERICAL SOLUTION 

The study area is divided into N x M x L curvilinear parallelepiped attached to the body and defined 

by the steps dimensionless x+, y+ and +, N and L being the number of meridians and parallels. 

For clarity, we note respectively U, V, W and T the meridional, normal, azimuthal and dimensionless 

temperature. the dimensionless conservation equations (1), (2), (3) and (6) are discretized using an 

implicit finite difference scheme. The calculations are performed at the nodes (i,j,k) with 1 i N, 

1 j M and 1 k L. After arrangement, the discretized equations can each be written in the following 

form: j 1 j j-1 j
A X B X C X D ,          (12) 

wherein X is chosen from one of the variables U, W and T, JMAX index characterizing the thickness 

of the boundary layer. The algebraic systems (12) associated with the discretized boundary conditions 

are solved by the Thomas algorithm. As for the dimensionless normal component is calculated from 

the continuity equation: 

k k k 1 k k 1 k

i 1, j i, j i 1, j i 1, j i 1, j i 1, jk k k i
i 1, j i 1, j 1 i 1, j 1

i 1 i 1

U U 3W 4 W W U1 r
V 3V V 2 y 1

4 x 2 r x r
                                (13)

 

For 1 i N-1, 1 k L-1 and 2 j JMAX–1 

The convergence within the boundary layer is achieved when the following criteria: 

(p 1) (p)

(p 1) (p)

X - X

Sup X , X

   (14) 

 is simultaneously checked for T, U and W. 

(p)X and (p 1)X  are respectively the values of the quantity X of the iterations p and p + 1. 

1

x4

u

y 0

1 V
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2 ≤ j ≤ JMAX -1 
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5. LIMIT THE OPENING OF THE CONE 

To ensure the validity of the assumption of laminar flow and to further avoid the problem of return of 

fluid particles, we propose a relationship that brings together the variation ranges of   and o for 

which, the dimensionless tangential component remains consistently positive. Then, the boundary of 

the opening of the cone as a function of the inclination α is defined by the following expression: 

 

                                                                                                              (15) 

We preceded to the verification of the normal component dimensionless V+. It seems negative for θ0 

< α on the lower meridian equation φ = 0°, and this indicates the presence of suction. However, to the 

extent of having a stable and knowing that α = f (θ0), we adopted the following condition: 

 

                                                                                                                                (16) 

6. RESULTS AND DISCUSSION 

In our results, we set Pr=0,72, Tp =373K and T =298K. 

We validated the numerical code by comparing the results of our calculations with those deduced 

from the literature [7]. The figure 2, illustrating the change in temperature at steady state as a function 

of the normal coordinate y+ at x+=1,0, shows that our results are in good agreement with those in the 

literature, the relative difference does not exceed 5%. 

 
Figure2. Comparison of steady state temperature profile against y+   at x+=1,0 and α=0° 

The curves in figure 3.a represent the evolution of the dimensionless meridional component of the 

velocity as a function of the dimensionless normal coordinate y+ on the upper meridian =180°, 

o=20° and for different values of α. These curves show that the value represented by a peak, is 

maximum in the vicinity of the apex of the cone and its amplitude decreases as the inclination angle 

increases. The figure 3.b represents the amplitude also decreases with increasing the opening angle. 

However, the variations of the opening and inclination angles of the cone affect very little the 

thickness of the boundary layer. These results are corroborated by the evolution of the dimensionless 

temperature according to the normal coordinate dimensionless represented by the curves in figure 9. 

 
Figure3.a. Meridian component of the velocity against y+  at x+=0,5 for different values of α, o=20° and  = 

180° 

 θ0 limite = π/2 – (α + 1) 

θ0 limite ≥ α+1  
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Figure 3.b. Meridian component of the velocity against y+  at x+=0,5 for different values of o, α=10° and  = 

180° 

The figure 4.a shows the evolution of the dimensionless normal component depending on the 

dimensionless curvilinear coordinate x+ for =0°, o=20° and for some values of . The curves show 

that it is positive for small values of the inclination ( <20°) and decreases asymptotically toward zero 

along the wall of the cone. And further, when the inclination angle increases, the normal component 

becomes negative and its magnitude decreases. It is noted that this component is zero along the lower 

meridian for values equal to half the opening angle and the angle of inclination of the cone. Moreover, 

the curves of figure 4.b show that the values of the normal component remains positive on the upper 

meridian defined by =180°, regardless of the inclination and the cone opening. However, this result 

is found in so far as the inclination angle increases, its grown modulus on this meridian and it 

decreases when the opening angle increase. The curves of the figure 5.a and figure 5.b corroborate 

these results. The negative values of the normal component of the velocity characterize the movement 

of the fluid to the wall on the lower meridian when the cone is strongly inclined (figure 6.a). These 

results were confirmed by the evolution of this component in function y+ for =45° and =0°, the 

fluid adheres better on the lower meridian. As against, this bonding tends to disappear with the growth 

of the opening angle. Then, the fluid is discharged from the wall on the middle and upper meridians, 

as shown in the curves of the figure 6.b.  

 

Figure4.a. Normal component of the velocity against x+  for different values of α, o = 20° and =0° 

 

Figure4.b. Normal component of the velocity against x+  for different values of o, α = 10° and α=30°, =180° 
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Figure5.a. Normal component of the velocity against y+  at x+=0,5 for different values of α, o=20°, =0° and 

=180° 

 
Figure5.b. Normal component of the velocity against y+  at x+=0,5 for different values of o, α=10°, =0° and 

=180° 

 

Figure6.a. Normal component of the velocity against y+  at x+=0,5 for different values of α, = 45° and o=20° 

 

Figure6.b. Normal component of the velocity against y+ at x+=0,5 for different values of o and , α=45° 
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The figure 7 shows the evolution of the normal component of the velocity depending on the azimuthal 

coordinate  for some values of o and the inclination angle. Overall, it varies following a sinusoidal 

profile and increases from the lower meridian to the upper  meridian. Its amplitude increases with the 

angle of inclination and decreases with the increase of the opening angle o. The curves show that 

there is a special point in the vicinity of the meridian of equation =90° and whose the position 

depends on the curvilinear abscissa x+, which the normal component does not depend on the angle of 

inclination or of the opening angle. Moreover, the amplitudes decrease according to the growth of the 

value of o and  x + (Figure 7.b). However, the intensities increase with increasing α and constantly 

decreases with increase in the value of x + (Figure 7.c). The figure 8, illustrates the variations of the 

azimuthal component. The module of this component increases with increasing α, however, W + 

remains unchanged in terms of x +. The presence of substantial aspiration appears when the body is 

heavily tilted (figure 8.b). The dimensionless azimuthal velocity component varies sinusoidally as a 

function of φ and the intensities depend and constantly increase with the growth of the inclination 

angle α. Furthermore, the opening angle at the top has minimal effect on this component (figure 8.d).   

 
Figure7.a. Normal component of the velocity against  at x+=0,5 for different values of o and  

 

Figure7.b. Normal component of the  velocity against , for different values of x+ and o, =30° 

 
Figure7.c. Normal component of the   velocity against , for different values of x+ and , o=30° 
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Figure8.a. azimutal component of the  velocity against x+, for different values of o,  and φ 

 
Figure8.b. azimutal component of the  velocity against y+, for different values of  , o and x+ 

 
Figure8.c. azimutal component of the  velocity against y+, for different values of φ and , for x+=0.5 and 

o=10° 

 
Figure8.d. azimutal component of the  velocity against φ, for  different values of o,  and x+ 
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In this study, the flux is constantly uniform and the heat exchange takes place only according to the 

normal to the generating surface of the isothermal body. These remarks are confirmed by the curves 

of figure 10, showing the variations the Nusselt number with y +, for several values of θ0 and x + on 

the lower meridian. Therefore, the heat exchange decreases gradually when moving away from the 

wall and it is independent of θ0 and x +. 

 
Figure9. Temperature profile against y+  at x+=0,5 for different values of α, =0° and =180°, for o =20° 

 
Figure10. Nusselt number  against y+ at =0°, for different values of x+ and o, for α=30° 

The curves in figure 11, show that the coefficient of wall friction depending of x+, evolves of 

sinusoidal manner with . Its amplitude grows when the angle of inclination increases and decreases 

with increase of the opening angle. It seems normal that for the low opening and inclination angles of 

the cone, the friction tangential coefficient Cfu varies very slightly depending of . On the other hand, 

the azimuthal friction coefficient Cfw also evolves according to a sinusoidal profile with the 

azimuthal coordinate , as shown in figure 12. These curves show that the amplitude increases with 

the increase of the inclination angle , while the influence of the opening angle is practically very 

low, in reason of the symmetrical of revolution of body. 

 

Figure11. Tangential friction coefficient against  at x+=0,5 for different values of o and α 
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Figure 12. Azimuthal friction coefficient against  at x+=0,5 for different values of o and  

7. CONCLUSION 

We conducted a numerical study of flow and heat transfer by free convection around a cone of 

revolution whose axis is inclined relative to the vertical direction and the wall is kept at a constant 

temperature. We more particularly reported in this article the study of the influence of the opening and 

the inclination angles of the cone on the normal component of the velocity. Furthermore, our results 

showed that there is a privileged point situated in the vicinity of the meridian  = 90° which the 

normal component is both independent of the inclination and the opening angles of the cone. 

However, we noticed that the variation of the opening angle of cone does not affect much on 

azimuthal friction coefficient, while increasing the inclination angle, its only increases modulus. 

Moreover, the effects of the inclination and the opening angles of the cone are comparatively very 

small both on the thickness of the boundary layer that on the heat exchange. 
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