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Abstract: Description of the wave-particle duality and the uncertainty relation based on the Fourier conjugate 

mathematical models of the particle in the coordinate space and in the frequency space is discussed. The signals 
recorded by an observer in the coordinate space and the impulse space are satisfied to the fundamental 

principle of uncertainty. It follows from the uncertainty relation for the extent of the signal in the coordinate 

space and for the width of its Fourier spectrum, a special case of which are the relations of Heisenberg 

uncertainty.  
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1. INTRODUCTION 

Corpuscular-wave dualism is one of the concepts used to construct the physical pattern of the world, 

which are developed on the basis of synthesis of physical images and analogies described in the 

mathematical language. As was mentioned by de Broglie, Poincare believed that there exist an 

infinitely large number of logically equivalent points and patterns of reality, while the researcher 

chooses only one of them, based exclusively on the viewpoint of convenience [1]. The traditional 

description of corpuscular-wave dualism is based on quantization (sampling) of the energy of a 

moving corpuscle (particle) by analogy with photons. The corpuscular-wave dualism description is 

usually based on modeling of moving particles as wave packets and on the optical-mechanical 

analogy. However, the development of a simple and obvious model that explains how a moving 

particle acquires wave properties is still an urgent task. This work describes a motivated attempt to 

construct such a model, based on combining physical and information analogies and contributing to 

understanding of the wave nature of moving matter.  

The brilliant de Broglie’s guess about wave properties of moving particles was based on the 

Hamilton-Jacobi optical-mechanical analogy, quantization and presentation of light fields by fluxes of 

light particles (photons) possessing wave properties (Pauli, Einstein), and theoretical model implying 

the equivalence of mass and energy (Poincare, Einstein). The idea of quantization is illustrated by a 

simple example of a harmonic oscillator. The motion of a harmonic oscillator in the phase plane (in 

the momentum-displacement coordinates) is described by an elliptical phase trajectory. The area 

embraced by this trajectory is equal to the ratio of the energy Е and frequency   of oscillations, 

 EI , which was called the adiabatic invariant because it is conserved at small adiabatic changed 

in frequency. This means that the ratio of the energy of oscillations of the harmonic oscillator to 

frequency is equal to the energy derivative with respect to frequency or, if differentials are replaced 

by small increments, to the ratio of the corresponding increments of energy and frequency:  
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This equation suggests a possibility of quantization of the adiabatic invariant, which was called the 

“action” in analytical mechanics. It is the action that is sampled rather than the energy, which is a 
continuous function of frequency.  

The harmonic oscillator whose adiabatic invariant is sampled and whose quantum of the action is 

equal to Planck’s constant h  is a quantum oscillator. A specific feature of the quantum oscillator is 

the fact that its phase trajectory cannot be a closed curve in accordance with Heisenberg’s correlation 

ambiguities. The uncertainty of the phase trajectory position on the phase plane is h21 , and the 

adiabatic invariant of the quantum oscillator is determined by the formula  hnI 21 . As the 

adiabatic invariant for the harmonic oscillator is much greater than Planck’s constant, its changing 

with frequency may be considered as continuous and its phase trajectory may be considered as closed. 

The existence of the quantum of the action h  is a necessary, but not a sufficient condition for 

Heisenberg’s correlation ambiguities. It follows from corpuscular-wave dualism, which, in turn, is 
based on combining physical images, analogies, and mathematical transformations, including the 

Fourier transformation.  

Let us consider a harmonic wave propagating in a coordinate space and described by a periodic 

function of the form   krtiexp . The phase of this wave, kr t , is determined by the 

algebraic sum of the time-dependent  t  and space-dependent  r  components. The time-

dependent component of the phase is found as the product of the circular frequency   and the time t . 

The circular frequency of the wave is determined as T 22  , where T  is the wave period. 

The space-dependent component of the phase is the product of the wave vector k  by the radius-

vector r , which describes the spatial position of the point considered. The absolute value of the wave 

vector k  is determined by the spatial period of the wave ,  2kk . By comparing 

T 2  and  2k , we can see that the frequency   and the absolute value of the wave vector 

kk  have similar structures. Therefore, the wave vector k  has the meaning of the spatial 

frequency. In contrast to the frequency , the spatial frequency k  is a vector, which is determined by 

the projections kx, ky, and kz in the Cartesian coordinate system. The wave is described in the 

coordinate system (t, x, y, z) in the coordinate space and in the coordinate system ( , kx, ky, kz) in the 

frequency space. Correspondingly, if a moving physical object in the coordinate space is defined by 

the mathematical model  r,ts , the Fourier spectrum  k,s  corresponds to this model in the 

frequency space.  

The frequency space is equivalent to the momentum space because their coordinates differ by the 

factor 2/h : kp   and E . The motion of physical objects (corpuscle, macroscopic 

body, or wave) can be described in the coordinate or frequency (momentum) space. These mappings 

are related via the Fourier transformation and are consistent with the physical reality. For instance, a 

flying ball can be described by its position, velocity, and momentum; in the case of its rotation, the 
call is also described by the angular momentum. Certainly, here we mean mathematical models and 

signals detected by the observer rather than presentations and transformations of objects themselves. 

In accordance with the classical definition of matter as the objective reality given to us in sensation, 
signals may be considered as this sensation. The notions of the spatial frequency and of the frequency 

and momentum spaces are widely used in science and engineering. Examples are optical information 

technologies and spectroscopy [2, 3]. 

Let a moving material particle in the coordinate space be described by the function  ts vr  , where 

r  is the radius-vector of the particle location, v  is the velocity vector of the particle, and t  is the 

time. In the frequency space, it is described by the Fourier spectrum  k,s , which is a function of 

the spatial frequency  vvk k  (wave vector) and of the temporal frequency . The functions 

 ts vr   and  k,s  are related via the Fourier transform  

         





dtdtiitsts rkrvrvr expexp  
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         




kkvk sdttis 2exp ,                                              (1) 

where    is the Dirac delta function. Here we use the shift theorem and introduce the 

notation kv . The function     ks2  is the Fourier spectrum  k,s  of the 

function  ts vr  , which describes the particle moving in the coordinate space. As it follows from 

Eq. (1), the Fourier spectrum of the signal considered as a moving particle in the frequency space has 

the form of a  -function localized at the temporal frequency kv  and the spatial 

frequency 
2v

v
k . The directions of the corpuscle velocity v  and the wave vector (spatial 

frequency) k  coincide, whereas the absolute value of the wave vector k  (wave number k) is 

determined by the ratio of the frequency   to the velocity v: 

v


 kk  

The frequency   equal to the product of the wave vector and the velocity vector of particle 

motion kv , which is identical to the formula for the Doppler frequency shift and testifies to the 

kinematic nature of the frequency . The velocity v  is determined by the relative velocity of the 

corpuscle and observer coordinate systems; for the wave induced by corpuscle, it is determined by the 

group velocity. The dimension of the velocity as the ratio of the dimensions of the temporal and 

spatial frequencies,      kv  , indicating the reality of the wave-induced motion process. 

Using the definition of the group velocity as a derivative of the frequency with respect to the wave 

number
dk

d
v


 , we write simple transformations of the expression for the frequency : 

dk

d


v

kv
kv .                                                                          (2) 

According to the quantum mechanics concept, we have


E
 . As the energy Е is the kinetic energy 

of particle motion, 
m
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 where B  is the de Broglie wave length and Bk  is the de Broglie wave number: 
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According to Eq. (3), the length of the de Broglie wave induced by particle motion is determined by 

the ratio of Planck’s constant to the momentum. The kinetic energy of the moving particle, as well as 

its momentum, it relative in the observer coordinates system.  

Corpuscular-wave dualism is a fundamental property of moving matter; its universality follows from 
the quantum concept and adequate presentation of corpuscle motion in the Fourier-conjugate 
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coordinate and frequency spaces. It is related to the correlation ambiguities, which have a universal 

character and follow from the uncertainty principle for the functions  ts  and  s  describing the 

moving particle, which are considered as the Fourier-conjugate signals in the coordinate and 

frequency spaces. These functions bear information about the moving particle and satisfy the 

uncertainty principle for the signals 

    22222 E
2


 









dsdttst ,   

where Е is the signal energy;  




dttst
22

 is the energy of the second derivative of the Fourier 

spectrum of the signal by frequency;  







ds
22

2

1
 is the energy of the second derivative signal 

by time. The uncertainty principle yields the uncertainty ratio 

2

1
t ,                                                                           (4) 

where t  and   are the signal length in the coordinate space and the width of its Fourier spectrum, 

respectively:  
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The functions that describe quantum mechanics objects may be considered as signals in the coordinate 

and frequency spaces because the frequency space is an analog of the momentum space. Multiplying 

Eq. (4) by Planck’s constant, we obtain 

2


 Et ,                                                                           (5) 

where  E . This is the ratio of Heisenberg’s ambiguities for fluctuations of time intervals and 

energy at quantum mechanics scales.  

The momentum and frequency spaces in quantum mechanics are related as kp  . Multiplying and 

dividing the left-hand side of inequality (4) by the group velocity v , e.g., in the z direction, and taking 

into account that zt v and Bk


v
, we obtain 

2

1
 Bkz ,                                                                           (6) 

where vBk . Expression (6) relates the uncertainties of the spatial z  and frequency Bk  

coordinates. Multiplying inequality (6) by Planck’s constant and taking into account that pkB  , we 

obtain Heisenberg’s correlation ambiguities for a quantum mechanics object in the coordinate and 

momentum spaces: 

2


 pz .                                                                           (7) 

This result in the same way follows from the principle of uncertainty, and the uncertainty relation for 

the spatial signal 









2

1
kz  when multiplying this inequality on  . Where k - the uncertainty of 
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the spatial frequency in the chosen direction, z - the uncertainty of spatial coordinates. In quantum 

mechanics, the minimum uncertainty 
2


 pz  occurs when a quantum particle is modeled by a 

Gaussian wave packet envelope. In this case the analogy traces with a minimum of uncertainty for the 

time-dependent 









2

1
t  and spatial 










2

1
kz  Gaussian signals resulting from the 

uncertainty principle [3, 4]. There is no contradiction in corpuscular-wave dualism; it just means that 

an adequate method of description is determined by the chosen method of observation [4]. The 

spatial-frequency image of a moving object as the Fourier spectrum of a physical signal is feasible. Its 
wave properties are manifested, for example, in diffraction phenomena and in the Doppler effect. 

2. CONCLUSION 

Wave-particle dualism is based on the synthesis of physical images, analogies and displayed on 

language of mathematics. The concept of wave-particle duality can be described in terms of the 

Fourier conjugate mathematical models of movement particle. These models are adequately displayed 

as signals in the coordinate space and in the frequency (pulse) space with regard to the quantum of 
action. The signals detected by an observer in the coordinate and in the momentum spaces satisfy to 

the fundamental principle of uncertainty. It follows from the uncertainty relation for the extent of the 

signal in the coordinate space and the width of its Fourier spectrum, a special case of which the 
Heisenberg uncertainty relation is.  
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