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Abstract: The effect of uniform vertical magnetic field on the onset of surface tension driven convection in 
a relatively hotter or cooler layer of electrically conducting liquid is considered. A Fourier series method is 

used to obtain the characteristic value equation for the Marangoni number M. When instability sets in as 

stationary convection it is established numerically that both the critical Marangoni number and wave 

number increase with intensity of the magnetic field, irrespective of whether the liquid layer is relatively 

hotter or cooler. The asymptotic behavior of the critical Marangoni number for large values of the 

Chandrasekhar number is also obtained. 
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1. INTRODUCTION 

The phenomenon of the onset of surface tension induced convection in a thin horizontal liquid 
layer heated from below with free upper surface was first established theoretically by Pearson [1] 

who demonstrated that if the surface tension of the free surface is linearly dependent on 

temperature then convective instability can occur analogous to those described by Rayleigh [2] in 

terms of buoyancy (discussed in detail by Chandrasekhar [3]). Nield [4] considered the combined 
effects of surface tension and buoyancy on the onset of convection in a fluid layer heated from 

below with free upper surface and found that the two effects causing instability reinforce one 

another and that as the thickness of the fluid layer decreases, the surface tension effects become 
more dominant. Further contributions made by many researchers namely, Scriven and Sternling 

[5], Smith [6], Davis [7], Takashima [8, 9] and Gupta and Surya [10] have refined Pearson’s 

model by incorporating more realistic conditions. For a detailed study of Marangoni convection 

one may be referred to the work of Normand et al. [11], Koschmieder [12] and Schatz et al. [13]. 

In view of the stabilizing nature of magnetic field, a fact that has already been established by 

Chandrasekhar [3] for the buoyancy driven convection, by Nield [14] for the convective 

instability induced by both surface tension and buoyancy. The influence of magnetic field on the 
pure Marangoni convection in an electrically conducting liquid layer heated from below have 

been discussed by Rudraiah et al [15], Maekawa and Tanasawa [16], and by Wilson [17]. 

Recently, the onset of Marangoni convection in a relatively hotter or cooler liquid layer has been 
analyzed by Gupta and Shandil [18] and established that irrespective of the thermal nature 

(conducting or insulating) of the lower boundary, the critical Marangoni number significantly 

depends on whether the liquid layer is relatively hotter or cooler, and hotter the liquid layer more 

the postponement of the onset of convection. The problem considered here is a generalization of 
Gupta and Shandil [18] work to include the effect of vertical magnetic field. A Fourier series 

method is used to obtain the characteristic value equation analytically. The numerical results are 

obtained for a wide range of values of the Chandrasekhar number Q. It is shown numerically that 
both the critical Marangoni number Mc and the critical wave number ac increase monotonically 

with Q for a fixed value of the parameter 2 0T  where T0 and 2  being the appropriately chosen 

mean temperature and coefficient of specific heat (at constant volume) variation due to 

temperature variation respectively of the fluid layer. The asymptotic behavior of the critical 
Marangoni number for large values of the Chandrasekhar number is also obtained. 
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2. FORMULATION OF THE PROBLEM  

We wish to examine the stability of  an infinite horizontal electrically conducting liquid layer of 

uniform thickness d subject to strength externally imposed vertical magnetic field of H, which is 

heated from below with the upper free surface open to the ambient air, where surface tension 
gradients arise due to temperature perturbations. We choose a Cartesian coordinate system of axes 

with the x and y axis in the plane of the lower surface and the z- axis along the vertically upward 

direction so that the fluid is confined between the planes at z = 0 and z = d. A temperature 

gradient is maintained across the layer by maintaining the lower boundary at a constant 
temperature T0 and the upper boundary at T1 (< T0). It is assumed that surface tension is given by 

the simple linear law 
1 1( )T T       where the constant τ1 is the unperturbed value of τ at the 

unperturbed surface temperature T = T1 and 
1

( / )T TT       represents the rate of change of 

surface tension with temperature, evaluated at temperature T1, and surface tension being a 
monotonically decreasing function of temperature, σ is positive.  

Following Gupta and Shandil [18], we can write the linearized perturbation equations for an 

electrically conducting liquid in the presence of magnetic field are 
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Where ,w  and 
zh denote respectively the z-component of velocity perturbation and temperature 

perturbation from uniform vertical temperature gradient, and the z-component of the perturbation 

from the basic vertical magnetic field H,   is the kinematic viscosity;  is the thermal diffusivity, 

permeability   and resistivity  are each assumed constant.
 
 is the temperature gradient which 

is maintained, T0 is the unperturbed temperature of the lower surface and each is assumed 

constant. Further, that coefficient α2 (due to variation in the temperature) is a constant that ranges 

from 0 to 10
3 

for the liquid with which we are concerned. 
2 2 2

2

2 2 2x y z

  
   

  
 , and t denotes 

time.  

In seeking solutions of the equations (1), (2) and (3), we must satisfy certain boundary conditions, 

The boundary conditions at the lower rigid and conducting surface z = 0 are straightforward and 

given by 

w = 0                                                                                                                                               (4)                                                          

                                                                                                                                             (5)                              

                                                                                                                                               (6)            
                                                

 

The boundary conditions at the upper free surface z = d are more complicated.  

Because of the non-deflecting surface, the normal component of the velocity must vanish, that is, 

0w                                                                                                                                                 (7)  

The stress-balance condition satisfy the equation 

2
2

12

w

z
  


 

                                                                                                                              
(8)  

Here   is the density and
2 2

2

1 2 2x y

 
  

 
. The boundary condition (8) is usually referred to as 
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the Marangoni boundary condition (Pearson [6]). Finally, if we consider conservation of heat 

transport across the upper free surface, then we have 

k q
z





 

                                                                                                                                      
(9) 

where k  is the thermal conductivity of the fluid and q  is the heat transfer coefficient. 

We now suppose that the perturbations w ,   and 
zh  are of the form 

[ ( , , , ), ( , , , ), ( , , , )] [ ( ), (z), (z)]exp{ ( ) }z z x yw x y z t x y z t h x y z t w z h i a x a y pt   
          (10) 

where 
2 2

x ya a a  is the wave number of the disturbance and p is a time constant (which can be 

complex). Then express the equations obtained by substituting  expression (10) in equations (1)-

(3) in dimensionless form by taking 
*
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d
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dz

 .   

Restricting to the case when instability sets in as stationary convection, that is, when the marginal 

state is characterized by setting 0p   in the resulting equations. Eliminating K from these 

equations, and omitting asterisk for simplicity, we obtain 

                                                                                                                    (11) 

                                                                                                               (12)      

and the corresponding boundary conditions are  
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evaluated on the lower rigid boundary 0z   , and 
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evaluated on the upper free surface 1z  , where 
2 2

4

H d
Q




   is the Chandrasekhar number,

 
2d

M



  is the Marangoni number and 

qd
L

k
  is the Biot number. 

Solution to equations (11) and (12) is sought subject to boundary conditions (13a, b, c)–(14a, b, 

c). Thus we have an eigenvalue problem of order six. It is evident that when Q = 0 the system 
reduces to the case which has been analyzed by Gupta and Shandil [18]. 

3. SOLUTION OF THE PROBLEM 

The Fourier series method as presented by Nield [4] is convenient for the problem under 
consideration. The constants to be eliminated are denoted by 

2 2

1 2 3(0), (1), (1).D W D W     

                

We let 

                                                                                 (15) 
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                                                                                         (16)        

where the boundary conditions (13a), (13c) and (14a) have already been used while writing 

equation (15) and (16) 

Then, we have 
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The differential equations (11) and (12) are satisfied by substituting the complete Fourier 

expansions for W,    and their derivatives from equations (15)-(19) and equating the coefficients 

of sin n z , we obtain  
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The remaining boundary conditions require that 
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From equations (20)-(21),  An and Bn can be expressed in terms of 1 2,  and 3  which are when 

substituted in equations (22), (24) and on making use of equation (23), then yield two 

homogeneous equations in 1 and 2 . Elimination of these constants gives the eigenvalue 

equations as                                       
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     From the eigenvalue equation (25), M can be determined as a function of
 2 0a, Q, T  and L as the 

ratio of two determinants                         
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4. NUMERICAL RESULTS AND DISCUSSION 

The numerical calculations may be carried out as follows. For fixed values of 
2 0T ,  Q and L, 

expression (26) gives the Marangoni number M as a function of the wave number a. The 

minimum value of M is the critical Marangoni number cM and the value of a at which M attains 

the minimum is the critical wave number ac. For given values of  
2 0T  and Q  it may be 

mentioned here that the system was found to be less stable for an insulating upper free surface (L 

= 0), which is as expected, since an conducting upper free surface ( L ) yields a completely 

stable system so far as the surface tension driven convection is concerned. Values of critical 

Marangoni number cM and the critical wave number ac computed from expression (26) for 

assigned values of 2 0T  and Q, are listed in Table 1 and Table 2 respectively for L = 0 and 

L  . 

In either case it is evident that for a given value of 2 0T both Mc and ac increase monotonically 

with Q, and that for a fixed value of Q, an increase in the value of 2 0T  leads to an increased 

value of Mc while the value of critical wave number ac  remains unchanged. When 2 0T  = 0, the 

critical Marangoni number and the corresponding wave number obtained here are identical to the 

results obtained by Nield [14] (for the case when the Rayleigh number R = 0). 

Table1. Numerical values of Mc and ac , for various values of Q when L=0 

                                         

Q 
2 0

0T  
2 0

0.3T  
2 0

0.5T  

Mc ac Mc ac Mc ac 

0 79.607 1.933 113.784 1.933 159.213 1.933 

10 104.223 2.181 148.890 2.181 208.445 2.181 

50 189.873 2.630 271.246 2.630 379.745 2.630 

100 284.222 2.959 406.032 2.959 568.445 2.959 

500 919.777 4.080 1313.97 4.080 1839.55 4.080 

1000
 

1632.47 4.745 2332.1 4.745 3264.94 4.745 

2500 3624.93 5.838 5178.47 5.838 7249.85 5.838 

10000 12830.2 8.092 18328.8 8.092 25660.3 8.092 

For a fixed value of 2 0T , the asymptotic behavior of Mc and ac when Q   depend critically 

on the thermal conditions at the upper surface. We found from the eigenvalue equation (28) that 

when L = 0 

 2 01 1 28 cM
T .

Q
   and

1

40 81ca . Q
, 

Table2. Numerical values of Mc and ac , for various values of Q when 
L 

 

Q 
2 0

0T  
2 0

0.3T  
2 0

0.5T  

Mc / L ac Mc / L ac Mc / L ac 

0 32.073 3.014 45.819 3.014 64.146 3.014 

10 38.068 3.880 54.382 3.880 76.135 3.880 

50 55.744 4.361 79.635 4.361 111.489 4.361 

100 71.989 5.198 102.842 5.198 143.979 5.198 

500 149.519 9.123 213.599 9.123 299.039 9.123 

1000 210.699 12.499 300.999 12.499 421.398 12.499 
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2500 333.026 19.655 475.752 19.655 666.053 19.655 

10000 666.064 39.306 951.520 39.306 1332.130 39.306 

and when L 
 

 2 0 1

2

1 6 66 cM
T .

LQ

   and
1

20 393ca . Q
. 

 

Figure1. Neutral stability curves for various values of Q when 2 0T  = 0 and 2 0T  =   0.3 with L = 0. 

In Figure 1, the neutral stability curves are plotted for insulating upper free surface (L = 0), and 

2 0 0T  , 2 0 0.3T 
 
using relation (28) for various values of Q . The region below each curve 

represents the stable state. From Fig. 1, we observed that the neutral stability curves move 

upwards for increasing values of Q, clearly showing the stabilizing effect of Q, irrespective of 

whether the liquid layer is relatively hotter ( 2 0 0.3T  ) or cooler ( 2 0 0T  ). 
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