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Abstract: D.P. Mason and A.M.Kgathi integrated some thermodynamic identities for an ideal gas 
equation of state  p = nkT where p is the pressure, n is the particle number density, k is the Boltzmann 

constant and T is the absolute temperature .The present authors extend that work for a mixture of ideal 

gases with the general equation of state  p = p(ni ,T) as a special case and  found the total energy density 

function ( ) and the entropy per unit volume (S) as a function of other thermodynamic variables  n and T.                                                       
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1. INTRODUCTION 

 In a collision – dominated equilibrium for a gas, two thermodynamic variables describe the 
thermodynamic state of the system completely. D.P.Mason and A.M.Kgathi[1] considered the 

thermodynamic variables of a relativistic gas in collision – dominated equilibrium as  functions of 

the particle number density (n) and the entropy per unit volume (S). For a one component 

relativistic gas, the general form for a collision-dominated equilibrium distribution function is  

      
1

, exp a

af x p x x p  


    
                                                                                 (1)   

Where  
K

kT
   , 

1

kT
  , k = Boltzmann’s constant , K = Chemical potential ,  

T = absolute temperature, p
a
 is the four – momentum of a particle at a point x

a
 of space-time , 

a au  , 
a a a

k Du u u  , 
a

ku  and 
a

Du  are the kinematic and dynamic mean four-velcities of the 

gas ,   has different values for different distribution.For relativistic Bose – Einstein distribution 

1   , Fermi–Dirac distribution 1   , Maxwell–Boltzmann distribution 0  .Actually 

Oliver and Davis[2] have shown that the absolute temperature T is a homogeneous function of 

degree one in n and S in a relativistic gas in collision – dominated equilibrium with an equation of 

state  p =  where p is the isotropic pressure and   is the total energy density. But Mason and 

Kgathi took the interesting results of Oliver and Davis in a different way and extended their 
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results to the equation of state other than p =   for a one – component gas.  In a recent paper 

Mason and Kgathi [1] have shown that for all values of   in the equilibrium distribution function 

(1) in a one component gas the following two well-known thermodynamic identities 

d TdS Kdn                                                                                                                              (2) 

 And                          

TS Kn p                                                                                                                               (3)           

are satisfied and for relativistic Maxwell-Boltzmann distribution the above two identities can be 

integrated for a relativistic ideal gas equation of state   

p = nkT                                                                                                                                            (4)    

where   is the total energy density, T is the temperature in Kelvin, n  is the particle number 

density, K is the chemical potential per particle , p is the pressure, S  is the entropy per unit 

volume and  k is the Boltzmann constant. They obtained the general solution from equations (2) 
to (4) for the absolute temperature T(n,S) , the chemical potential per particle K(n,S) and the total 

energy density function   (n,S).  

In this paper the present authors consider a mixture of gases with a more general equation of state 

p = p(T, ni)                                                                                                                                      (5)   

While the thermodynamic identities take the form 

i i

i

d TdS K dn                                                                                                                      (6) 

 And     

i i

i

TS K n p                                                                                                                        (7) 

Where ni and Ki are respectively the particle number density and chemical potential of the  i -th 

gas while    , T, S and p are as before. Finally the case of a mixture of ideal gases is considered 

as a special case. The principal aim of this paper is to solve a linear differential equation for 

obtaining the expression of the total energy density function (  ) and entropy per unit volume (S) 

by an analytical approach. This technique may be used in different branches of Physics and in 

engineering sciences.  

In section 2, we write down the basic equations from the thermodynamic identities and found the 

expression for total energy density function (  ) and entropy per unit volume (S) after solution of 

equation (15). In section 3, mixture of ideal gases topic is discussed and expressions for   and S 

for those mixture of ideal gases are given. The entire discussion is given in section 4. Section 5 

contains conclusion and the future planning of the problem. 

2. FORMATION OF THE DIFFERENTIAL EQUATION AND ITS SOLUTION          

From the equation (6) one gets  

 1 2, , ,..........S n n                                                                                                                  (8)   

T
S





                                                                                                                                          (9) 

i

i

K
n





                                                                                                                                       (10) 

Hence in view of the equation (5), one can reduce the equation (7) to 
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1 2, , ,...............i
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  


   
    

   
                                                                      (11)      

p being a given function of the variables indicated  the equation (11) is the equation to be solved 

for   . 

Now we define 

1 1m n , 

1

j

j

n
m

n
      for  2j                                                                                                    (12) 

   1 2 1 2, , ,........... , , ,.............S m m S n n                                                                             (13)      

   1 2 1 2, , ,........... , , ,.............q T m m p T n n                                                                            (14)             

So that                      
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1

1
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 
 

The equations (12) to (14) along with the last three relations reduce the equation (11) to  

 1 1 2

1

, , ,.......S m q m m
S m S

  


   
    
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                                                                               (15)    

Where the equation (15) contains  m2, m3 etc. as mere parameters. This equation can be solved in 

the following way:  

Differentiating the equation (15) with respect to S while treating m1 , m2 , ........  as constants and 

using the equations (9) and (13) one gets 

1

1

0
q T T

S m
T S m

   
   
   

 

Now instead of treating S, m1, m2 , ............  as independent if one treats  T,m1,m2 , ...... as 
independent variables the above equation takes the form  

 1 2

1

1

, , ,.......S T m mq
S m

T m


 
 

 

This is a linear equation in S and is solved by integrating this equation. Thus the solution is                                                                                                       

1

P
S m

T





                                                                                                                                    (16)  

Where  
 1 2

2 3 12

1

, , ,........
, , ,.......

q T m m
P T m m dm

m
                                                           (17)      

Also integrating by parts the equation (9) and using the equations (16) and (17) one gets  
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 1 1 2, ,.......
P

m T P m m
T

 
 

   
 

 

Where     is an arbitrary function of the variables indicated. Now putting the last equation back 

into the equation (11) and using the equations (9), (16) and (17) one gets 

 1 2 1, ,......m m m  .constant 

Hence the solution for   is given in the following form:  

1

P
m T P

T


 
  

 
                                                                                                                     (18)            

But it is found from the equation (18) that    can be easily absorbed in the arbitrary  function  P 

where m2 , m3 , ..........  are treated as constants,   is an arbitrary function of the variables 

indicated , the function  q ( T, m1, m2 , .............) is related to the given function p ( T, n1 , n2 , 

.............) through the equation (14) while  m1 , m2 , ............ are related to  n1 , n2 , .............  

through the equations (12). As in the previous equations (16) to (18) along with the equations (12) 

and (14), we express   and  S as functions of  T , n1, n2 , ............   and  thereby we express   as 

a function of  S , n1 , n2 , ...............  with  T  as the parameter. 

3. MIXTURE OF IDEAL GASES [SPECIAL CASE] 

Restricting to a mixture of ideal gases and using the law of partial pressure the equation (5) takes 

the form  

1,2

i

i

p kT n


                                                                                                                                  (19) 

Where k is the Boltzmann constant. Putting this in equation (14) and using the equations (12), 

(13), (16), (17) and (18) one gets 

32
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 
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                                                        (21) 

Where   is an arbitrary function of the variables indicated as before? 

4. DISCUSSION 

In a relativistic gas with collision – dominated equilibrium for equation of state  p =   , Oliver 

and Davis took  the prior work for the determination of  the absolute temperature T and showed 

that T is a homogeneous function in  n and  S .Further it can be observed that the relativistic 

perfect gas law  p = nkT  holds for the relativistic  Maxwell-Boltzmann distribution function. But 

for a quantum gas, the equation of state (4) is not satisfied whereas for a non-quantum gas in 

collision-dominated equilibrium described by the relativistic Maxwell-Boltzmann distribution, the 

equation of state (4) is satisfied. Moreover Mason and Kgathi found the two independent 

thermodynamic variables (n and S) for the two thermodynamic identities (2) and (3) with the ideal 

gas equation of state (4). But this result is valid for a limited range of energies. After that the 

present authors integrated the same identities for a mixture of gases with a more general equation 

of state p = p (ni, T) for the variables  , S and K. It is a more general result than that of Mason 

and Kgathi from which the result for a single gas is obtained as a special case.  
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5. CONCLUSION 

In summary , the thermodynamic identities given by equations (6) and (7) for a mixture of gases 

whose equation of state is given by the equation (5) , have been integrated to give the equations 

(16) to (18) where  q ( T , m1 , m2 , ...........) is connected  to  p ( T , n1 , n2 , .............) through the 
equation (14) while m1 , m2 , ............. etc. are connected  to  n1 , n2 , ..............etc. through the 

equations (12). In the special case of a mixture of ideal gases where the equation of state is given 

by the equation (19), S and   are given by the equations (20) and (21). This work is the 

generalized extension of the previous work of Mason and Kgathi[1] . Our future plan is to solve 

the same thermodynamic identities (2) and (3) for many component quantum gas with modified 

equation of state. 
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