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Abstract: The present investigation mathematically establishes that the viscoelastic double diffusive 
convection coupled with cross diffusions  of the Veronis' type cannot manifest as oscillatory motion of 

growing amplitude in an initially bottom heavy configuration if the thermal Rayleigh number SR , the 

Lewis number  , the Prandtl number   and the viscoelastic parameter F satisfy the 

inequality   .10,11
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 A similar mathematical theorem is also proved 

for Stern’s type configuration. Further, the results derived herein are uniformly valid for the quite general 

nature of bounding surfaces. 

Keywords: Double-diffusive convection; Rayleigh numbers; Prandtl number; Lewis number; Soret and 
Dufour effects; Rivlin –Ericksen viscoelastic fluid. 

 

1. INTRODUCTION 

Double diffusive convection, with its archetypal case of heat and salt, generally referred to as 

thermohaline convection, has been intensively studied in recent past on account of its interesting 

complexities as well as its direct relevance in many problems of practical interest in the fields of 
Limnology, Oceanography, Geophysics, Astrophysics and Chemical Engineering etc. Two 

fundamental configurations have been studied in this context, the first one by Stern [1] wherein 

the temperature gradient was stabilizing while the concentration gradient was destabilizing and 
the second one by Veronis' [2] wherein the temperature gradient was destabilizing while the 

concentration gradient was stabilizing. The main results derived by Stern and Veronis' for their 

respective problems are that instability might occur in the configurations through a stationary 

pattern of motions or oscillatory motions provided the destabilizing concentration gradient or 
temperature gradient is sufficiently large even when the total density field is gravitationally stable. 

Thus, oscillatory motions of growing amplitude can occur in a thermohaline configuration  

of the Veronis' type wherein the total density field is either gravitationally stable or unstable as 
indicated by the analysis of Veronis' notwithstanding the respective character of his work with 

respect to the nature of the bounding surfaces.  

The stability properties of binary fluids are quite different from pure fluids because of Soret and 

Dufour effects [3], [4]. An externally imposed temperature gradient produces a chemical potential 
gradient and the phenomenon known as the Soret effect, arises when the mass flux contains a 

term that depends upon the temperature gradient. The analogous effect that arises from a 

concentration gradient dependent term in the heat flux is called the Dufour effect. Although it is 
clear that the thermosolutal and Soret-Dufour problems are quite closely related, their relationship 

has never been carefully elucidated. They are in fact, formally identical and identification is done 

by means of a linear transformation that takes the equations and boundary conditions for the latter 
problem into those for the former. The analysis of double diffusive convection becomes 

complicated in case when the diffusivity of one property is much greater than the other. Further, 

when two transport processes take place simultaneously, they interfere with each other and 

produce cross diffusion effect.  The Soret and Dufour coefficients describe the flux of mass 
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caused by temperature gradient and the flux of heat caused by concentration gradient respectively. 

The coupling of the fluxes of the stratifying agents is a prevalent feature in multicomponent fluid 
systems. In general, the stability of such systems are also affected by the cross-diffusion terms. 

Generally, it is assumed that the effect of cross diffusions on the stability criteria is negligible. 

However, there are liquid mixtures for which cross diffusions are of the same order of magnitude 
as the diffusivities. There are only few studies available on the effect of cross diffusion on double 

diffusion convection largely because of the complexity in determining these coefficients. Hurle 

and Jakeman [5] have studied the effect of Soret coefficient on the double–diffusive convection. 
They have reported that the magnitude and sign of the Soret coefficient were changed by varying 

the composition of the mixture. McDougall [6] has made an in depth study of double diffusive 

convection where in both Soret and Dufour effects are important. 

In all the above studies, the fluid has been considered to be Newtonian. However, with the 
growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations on such fluids are desirable. The Rivlin-Ericksen [7] fluid is such fluid. Many 

research workers have paid their attention towards the study of Rivlin-Ericksen fluid. Johri [8] has 
discussed the viscoelastic Rivlin-Ericksen incompressible fluid under time dependent pressure 

gradient. Sisodia and Gupta [9] and Srivastava and Singh [10] have studied the unsteady flow of a 

dusty elastico-viscous Rivlin-Ericksen fluid through channel of different cross-sections in the 
presence of the time dependent pressure gradient. Sharma and Kumar [11] have studied the 

thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid acted on by a uniform 

rotation and found that rotation has a stabilizing effect and introduces oscillatory modes in the 

system. Sharma and Kumar [12] have studied the thermal instability in Rivlin-Ericksen elastico-
viscous fluid in hydromagnetics. 

In the present paper, therefore, an attempt is made to establish a mathematical theorem disproving 

the existence of neutral or unstable oscillatory motions in an initially bottom heavy/top heavy 
thermosolutal convection configuration of the Veronis'/ Stern type in a layer of Rivlin-Ericksen 

viscoelastic fluid in the presence of Soret and Dufour effects..   

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

The relevant governing equations and boundary conditions of thermosolutal convection of a 

Rivlin-Ericksen viscoelastic fluid coupled with cross-diffusions are given by 
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With Dww  0             at z=0 and z=1     (on rigid boundaries)                                 (4)   

            wDw 20          at z=0 and z=1     (on a dynamical free boundaries),             (5) 

 In (1)–(5), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D   is differentiation w.r.t z , a
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>0 is a constant, σ > 0 is a constant,   > 0 is a constant, 10  F  is a constant, TR and RS are 

positive constants for the Veronis' configuration and negative constant for Stern's configuration, p 

= pr + ipi is complex constant in general such that pr and pi are real constants and as a consequence 

the dependent variables w(z) = wr(z) + iwi(z),  (z) = r (z) + ii (z) and  (z) = r (z) + ii (z) 

are complex valued functions(and their real and imaginary parts are real valued). The meanings of 

symbols from the physical point of view are as follows; z is the vertical  coordinate, d/dz is 

differentiation along the vertical direction, a
2
 is square of horizontal  wave number, σ 
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thermal Prandtl number, 
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the concentration,   is the temperature, p is the complex growth rate and w is the vertical 

velocity. 

3. THE LINEAR TRANSFORMATION AND MATHEMATICAL ANALYSIS 

The nature of the system (1)-(3) is clearly qualitatively different from those of double-diffusive 

convection problems ( TT SD  0 ) as now we have coupling between all the three eigen- 

functions  andw ,,  in all the three equations. Consequently, they behave nastily and obstruct 

any attempt for the elegant extension of the earlier results for the double-diffusive convection 
problems to the present generalized set up. The nasty behaviour of these equations is mollified by 

the linear transformations given by: 
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And A is a positive root of the equation 
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The system (1)-(3) together with boundary conditions (4)-(5), upon using the transformations as 

defined above takes the following form: 
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The sign tilde has been omitted for simplicity. 

It may further be noted that equations (7)-(13) describe an eigenvalue problem for p and govern 
double-diffusive instability of Rivlin-Ericksen viscoelastic fluid coupled with cross-diffusions for 

any combination of dynamically free and rigid boundaries. 

We now prove the following theorem 
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then a necessary condition for the existence of a non-trivial solution  , , ,w p   of equations (7)-

(9) together with boundary conditions (10)-(13) is that 
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Proof:   Multiplying equation (7) by w* (the complex conjugate of w) throughout and integrating 
the resulting equation over the vertical range of z, we get  
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Taking the complex conjugate of (8) and (9) and using the resulting equations in (15), we get 
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Integrating the various terms of equation (16) by parts for an appropriate number of times and 
making use of either of the boundary conditions (10) – (13), and one of the following inequalities 
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 Equating the real and imaginary parts of both sides of equation (18) and canceling pi 0 

throughout from the imaginary part, we get  
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Equation (19) can be written in the alternative form as 
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And we derive the validity of the theorem from the resulting inequality obtained by replacing each 
one of the terms of this equation by its appropriate estimate. 

Since   andw,  vanish at z = 0 and z = 1, therefore Rayliegh-Ritz inequality [13] yields 
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Utilizing inequalities (22) and (25), we get 
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Multiplying (8) by its complex conjugate and integrating the resulting equation over the vertical 

range of z, we get 
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Integrating the above equation by parts an appropriate number of times and using either of the 
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Also emulating the derivation of inequalities (26) and (27) we derive the following inequality 
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Combining inequalities (29) and (30), we get 

 

1

0

2
dzw   222 a 

1

0

22

1 dzk                                                                                               (31) 

Also, we know 

    

1

0

2

1
2

2

1
1

0

2

1

0

2
www

 

Which upon using inequalities (29) and (30) yields 

 

        dzdzaDakdzw 2

1
21

0

2

1

1

0

2
22222

1

21

0










                                             (32) 

      

1

0

22222

1 * dzaDak                  (Using Schwartz inequality) 

   dzaDka  

1

0

2222

1

22                                                                                              (33) 

Further, using inequality (24), we have 

 
1

2 22

0

D a dz     
1

22 2

0

a dz      .                                                                               (34) 

Also it follows from equation (20) that 
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Combining inequalities (24) and (25) and using inequality (17), we get 
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Also, from equation (21) and the fact that pr ≥ 0, we obtain, 
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Which implies that? 
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Since the minimum value of
 

3
2 2

2

a

a

 
 for a

2
 > 0 is 

427

4


 . 

Hence, if
 













 




 21
4 1

1
4

27 kFk
RS , then we must have 

RRS
  

And this completes the proof of the theorem.  

Theorem 1 implies from the physical point of view that the thermosolutal convection of the 

Veronis' type in the Rivlin-Ericksen viscoelastic fluid coupled with cross –diffusions cannot 

manifest as an oscillatory motions of growing amplitude in an initially bottom heavy 

configuration if 

 












 




 21
4 1

1
4

27 kFk
RS .                       . 

Further this result is uniformly valid for the quite general nature of the bounding surfaces. 
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Special Case1.  For the case when F = 0 (Newtonian Fluid) Theorem 1 can be restated as:  

If 0,0  SRR , rp  ≥ 0, pi   0, and 










 21
4

1
4

27 kk
RS , then a necessary condition for 

the existence of a non-trivial solution (w,  , , p) of equations (7) – (9) together with boundary 

conditions (10) – (13) is that: 

RRS
 . 

Theorem2. If 0,0  SRR , rp  ≥ 0, pi   0, 1F  and   







 2

1
4

1
1

1
4

27
kF

k
R




 , 

then a necessary condition for the existence of a non-trivial solution  , , ,w p   of equations (7)-

(9) together with boundary conditions (10)-(13) is that 

SRR   .                                                                      (39) 

Proof:  Putting SS RRandRR   in equation (7) and following the same process as is 

done in theorem1, inequality (38) in the present case assumes the form 

    


 
,0

1
1

1

0

2

1
22

2

2222 


















  dzw

ka

aRkF
a


                                                   (40) 

Or 
 


 

 ,0
11

1

1

0

2

1

2

3

2

22





















 dzw

k
R

kF

a

a




 

Which implies that? 

   







 







 2

2

1

322 1
1

kF

a

ka
R  , 

And thus we necessarily have 

 







 




 21
4 1

1
4

27 kFk
R , 

Since the minimum value of 
 

3
2 2

2

a

a

 
 for    

4

27
0

4
2 

isa    

 







 




 21
4 1

1
4

27
,

kFk
RifHence  , then we must have 

SRR  , 

And this completes the proof of the theorem. 

Theorem 2  implies from the physical point of view that the thermosolutal convection of the 

Stern's type in the Rivlin-Ericksen viscoelastic fluid coupled with cross-diffusions cannot 

manifest as an oscillatory motions of growing amplitude in an initially top heavy configuration if 

 







 




 21
4 1

1
4

27 kFk
R . 

Further this result is uniformly valid for the quite general nature of the bounding surfaces. 

Special Case2.  For the case when F = 0 (Newtonian Fluid) Theorem 2 can be restated as: 
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If 0,0  SRR , rp  ≥ 0, pi   0, and 







 2

1
4

1
1

4

27
k

k
R




, then a necessary condition for 

the existence of a non-trivial solution ),,,( pw   of equations (7) – (9) together with boundary 

conditions (10) – (13) is that 

SRR  . 
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